
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4006 http://www.webology.org

Memory And I/O Efficient Rectilinear Steiner Minimal Tree

Construction Under High Performance Computing Environment

Dr. Latha N.R1 , Dr. Pallavi G B2 , Dr. Shyamala G.3 , Dr. G R Prasad4

1,2,3Assistant Professor, Dept. of CSE B.M.S. College of Engineering, Bangalore, India.

4Professor, Dept. of CSE B.M.S. College of Engineering, Bangalore, India.

Abstract—In modern VLSI circuit reducing the runtime as well as wirelength are considered to be the most

preferred objectives. Thus, Rectilinear Steiner Minimal Tree (RSMT) construction is challenging. FLUTE

(Fast Look-Up table) is the widely used method for fast and accurate RSMT construction. The FLUTE

attained very good performance for smaller as well as higher degree nets, however, this system induces

memory overhead. But it is important to utilize memory in an efficient manner. Therefore to overcome these

persisting research problems, this work proposes a memory and I/O efficient RSMT (MIOERSMT)

construction. In addition, by using high performance computing (HPC) environment like CPU and GPU

further reduction in the execution time for constructing RSMT. But, GPU based model induces high

deployment cost and requires efficient memory management method. Therefore, Performance and memory

constraint parallel computation (PMCPC) algorithms are proposed that helps in efficient utilization of the

computational capacities of these shared-memory multi-core HPC model. Investigations are performed on

small to large nets using ISPD’98 benchmarks. The outcome achieved demonstrates that the suggested routing

model reduces wire length, improves memory utilization, and also attains better processing time in

comparison with the sequential and existing VLSI routing model.

Keywords—Graphical processing unit, HPC, Multi-core environment, Parallel computing framework,

RSMT, VLSI.

I. INTRODUCTION

Electronic design Automation in Very Large Scale Integration (VLSI) is a scheme where hundreds to

thousands of electronic modules are placed on a single chip. Designing competent algorithm for global routing

process of VLSI is in demand with the increase in logic circuits numbers as well as the rapid increase in

memory capabilities. Placing the components in good positions is crucial, as this could gradually decline the

power and heating up of chip, which in turn results in reduced chip size and decrease in production cost. Thus

the main criterions that must be considered are reducing the aggregate wire-length, space and chip cost.

Majority approaches concentrate towards lessening the aggregate wire-length. In the VLSI physical design.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4007 http://www.webology.org

routing is a phase which involves global routing stage and then followed by detailed routing stage. First stage

i.e., global routing does connections among blocks, however will not give details of each wire or pins. On the

other hand second stage of routing performs point to point links amongst pins of every block. Further routing

uses Rectilinear Steiner Trees (RST) in order to join all the pins of a net. With improvement in VLSI

technology, the amount of pins that are to be connected is increasing to hundreds, and in some cases even to

thousands. Finding RST’s for problems of this size takes more execution time and leads to increased IC design

process time and increased design cost.

The Main purpose of routing is finding Minimal RST’s or constructing Rectilinear Steiner minimum tree

(RSMT). Generating RSMT includes connecting the entire pins of a net in horizontal or vertical manner. For

a group of given N points of a plane, Rectilinear Steiner Minimum Tree (RSMT) problem involves identifying

the least distance rectilinear Steiner tree which joins these points accomplished by means of extra points

known as Steiner points. Generating RSMT is of major concern in VLSI design phases namely

interconnection, placement and floor planning. This is used in estimating, delay in transmission and delay in

interconnection and also for computing workload. RSMT construction is applied during various global routing

stages in constructing routing structure for all nets. This classical problem is proved as Non-deterministic

polynomial problem [1]

 The Generation of RSMT in VLSI is characterized as Non-deterministic polynomial problem [1],

consequently rectilinear minimum spanning tree (RMST) are being used for maximum methods adapting

dimensionality of space [2]. A fast and accurate look up table approach that provided optimal solution in

constructing RSMT namely FLUTE was presented by [3] and [4]. The algorithm is built on the lookup table

concept that is, for given a problem it finds the solution by referring to the lookup table instead of computing

it from the scratch. But this approach has a drawback of applying it to nets of degree up to 9. For bigger nets,

the net is to be broken down and then the FLUTE has to be applied, which increased runtime, wire-length and

induced memory overhead. FLUTE is found to be very effective for bigger net having the runtime

complexity O(n log n). The problem with this technique is that for bigger nets, the accuracy is affected

severely mainly because of the error introduced while the nets are divided.

Further, the FLUTE is improved by presenting a net partitioning technique that is scalable [5]. Here the

bigger nets are divided as subset of nets, later are merged by including Steiner nodes. Hence the approach

handled the smaller as well as bigger degree net incurring minor reduction of accuracy that resulted in runtime

complexity of O(n log2 n). Later an enhanced lookup table based RSMT construction [6] was presented that

resulted in a better balance between accuracy and runtime. The works [5] and [6] both does not consider

memory limitations while generating the Look-up table during RSMT construction. Future design in VLSI

consists of static blocks namely IP blocks and macros, FLUTE technique can be applied in the research works

[7] [8] and [9]. In these designs the most preferred objective is to minimize wire length and reduce memory

overhead. In [9] presented a technique named FOARS (FLUTE based Obstacle Avoiding RSMT construction

(OARSMT)). This approach segments group of pins to several subgroups applying top-down method. While

many algorithms were proposed for solving the RSMT construction problem as in [20] [21] [22] and[25],

the majority of these algorithms are sequential, and are not parallel [15]. In [10] [28] [29] proved global routers

normally decompose a net using RSMT. Thus, decreasing clogging as well as gaining flexibility relies on

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4008 http://www.webology.org

generation of RSMT. Nevertheless, little improvement in wire length.In [11] as well as [12] [35] and [36]

present a method that resolves global routing issues. The work [11] proposes a technique called as GRIP

(Global Routing Technology using Linear Programming) and [12] propose an approach that adapts FLUTE

technique and creates a fast Steiner tree that is congestion driven, but have not made efficient utilization of

memory as well as CPU. In order to resolve congestion problem in global routing [13] as well as [14] proposed

a model adopting game theory and clustering technique that improved the runtime complexity of routing in

VLSI physical design. The work [15] proves maze routing could generate OARSMT on heterogeneous high

performance computing (HPC) platform like CPU and GPU.

Similarly, [16] exploited heterogeneous computing to propose an approach for placement based on parallel

clustering. The technique makes use of CPU as well as GPU cores to full extent. The result proves that this

model achieve better runtime compared with its sequential strategy[19] and [23. But, using GPU results in

additional deployment cost and also memory limitation is not taken into consideration by the model, which

led to more I/O access time. In addition, it is observed processing job on high performance computing

environment is constrained by memory bounds as utmost time jobs are waiting for memory availability for

further execution. Therefore existing routing designs prompts high computation cost on shared memory

environment.

For overcoming the above investigated problems, this research work proposes a Memory and I/O efficient

RSMT (MIOERSMT) construction [17]. The MIOERSMT is designed to reduce wire length, processing time

and improve memory utilization. Further, the MIOERSMT construction is accomplished adopting parallel

approach using high performance computing platform. The Performance and memory constraint parallel

computation (PMCPC) algorithms facilitates in exploiting the computational power from these shared-

memory multi-core HPC systems.

The contributions of the research are as depicted below:

• Propose a novel parallel computing environment for constructing a memory and I/O efficient RSMT for

VLSI circuit.

• The novel approach proposed minimizes wire length, the computation time as well as memory

requirements.

This Research paper is organized as : Section I, comprises of introduction to parallel computing environment

for constructing a memory and I/O efficient RSMT for VLSI circuit. Additionally, it projects the issues and

challenges in the memory and I/O efficient routing design for VLSI circuit. Section II, presents the proposed

novel parallel computing environment model for developing memory and I/O efficient routing model.

Experimental result and analysis are presented in section III. Final Section concludes and proposed the future

research direction of work.

I. INTRODUCTION TO PARALLEL COMPUTING ENVIRONMENT TO PERFORM MEMORY AND I/O

EFFICIENT RSMT CONSTRUCTION FOR VLSI CIRCUIT

 With the increase in computer technology general-purpose multicore processors are being largely

adopted in different areas of the industry. These include signal processing and embedded space as there is

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4009 http://www.webology.org

increased need for additional performance efficiency for these general-purpose applications. Parallel

processing amplifies the performance significantly by enhancing the parallel resources, without increasing the

power requirements. There are abundant and diverse implementations of multicore processors and these

Designs vary from the usual multi-processor systems to that which consists of many programmable Arithmetic

Logic Units (ALUs).

 In order to develop an effective multicore execution framework, we much understand the system

with respect to architectural and algorithmic perspectives. There are different characteristics that have to be

considered while designing methodologies for HPC systems like understanding prerequisite for

accomplishing good parallelization, map the parallel threads to group of functional and processing unit,

exploiting processor core comprising limited functionalities, familiarizing on constrained on-chip memory

and off-chip memory capacity and the performance on multicore systems.

 In addition to the above features, there is a need to consider other multicore issues which play a very

important role in parallel programming like Number of processing cores, caching, memory bandwidth and

synchronization

 Multi-core processors today are gaining popularity as it finds extensive application in high

performance computing and in user electronics. Adopting graphics processor for general purpose computation

is becoming common, as this result in a steep increase in performance when used to particular applications.

Such increase in parallelism (multiple threads on a CPU or GPU) and heterogeneity (simultaneous use of a

CPU and GPU) have significantly improved the productivity and overall performance of many traditional

compute intensive systems [26] [30] and [33].

Today, there still exists certain applications that demands faster execution but efficient parallel or

heterogeneous executions are not designed till now like RSMT construction. Programming languages have

been developed to utilize the cores available in multicore of GPU

The CUDA language for programming GPGPU are modeled to execute on only NVIDIA’s GPUs,

while Open CL are designed to work on different manufacturers of multi core CPU and GPU devices,

including NVIDIA’s GPUs. In spite of CUDA’s hardware constraint, Open CL follows similar syntax and

other features of CUDA. GPU’s have become dominant as new parallel programming interfaces for general

purpose computations are being introduced like Computer Unified Device Architecture (CUDA), Stream SDK

and Open CL. This makes GPUs to be selected as the best option for solving high-performance numerical

application, scientific problems and also engineering applications.

But with all the above said features designing programs to work on GPUs is still a challenge. The main

reason for this is contemporary GPUs involves composite memory organization comprising multiple low

latency on-chip memory other than the off-chip memory. Further, the access latency and optimal access

pattern of each memory is considerably different, this poses a major challenge to design methods which

consume in an optimal way the various memories, endure their latencies and enhance the memory

considerations [27] [31] [32] and [34]. Optimizing an application becomes difficult because of the memory

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4010 http://www.webology.org

hierarchy and the extremely parallel execution model[24]. These challenges surge exponentially if the

applications that needs optimization and parallelization are memory intensive processes like Sparse Matrix-

Vector multiplication (Sp MV)[33], Graph algorithms or VLSI routing algorithms which are critical in most

analysis and simulation tasks of VLSI design

High performance computing environment such as CPU and GPU does not take memory limitation into

consideration and therefore, it is observed processing job on high performance computing environment is

constrained by memory bounds as utmost time jobs are waiting for memory availability for further execution.

Therefore existing routing designs prompts high computation cost on shared memory environment. For

overcoming these research issues and challenges, it is important to design a VLSI routing model that minimizes

wire length, runtime as well as memory utilization and develop memory constraint High performance

computing environment for constructing RSMT with reduced wire length, memory usage, and improved

speedup.

II. HIGH PERFORMANCE COMPUTING ENVIRONMENT MODEL FOR ESTABLISHING MEMORY AND I/O

EFFICIENT RECTILINEAR STEINER MINIMUM TREE CONSTRUCTION

The segment proposes a High performance computing structure towards generating memory and I/O

efficient RSMT (MIOERSMT) routing technique. In the beginning, the work specifies the method of

accomplishing the memory and I/O efficient RSMT. Later it describes the process of parallel computation of

MIOERSMT on high performance computing environment. At the end parallel computation model is presented

for generating sub-graphs/sub-tree that utilized resources in a better way (i.e., decreasing processing time along

with improved memory management).

A. Memory and I/O efficient RSMT routing design

This division presents generation of memory and I/O efficient RSMT (MIOERSMT). This MIOERSMT

design is intended to reduce memory requirement, computation time as well as wire-length. This approach

initially divides the tree as sub trees by considering available memory, as analogous to [6] later, considers

Memory and spanning tree to be the input. First, the model initializes one node as a root node by calculating

the smallest overhead edges (i.e.) using memory optimized spanning graph. A parent node is the one which

is nearer to a root node. Optimization of memory for larger net size is obtained, by realizing a child-parent

association through the edges, and later applying depth-first search and divide and conquer technique. For the

given graph H(N, M), in which M and N indicates a group of ordered pairs of edges and nodes correspondingly.

Let m = |E| depicts group of edges and n = |V| represent node set. Initially a spanning graph H is constructed

and then modified by adding Steiner nodes α which denotes that it is connected to all nodes in H as shown in

Algorithm 1. Later, the divide-conquer technique is applied for generating Memory optimized tree of graph H

using Algorithm 2. Finally, a merging algorithm is presented in Algorithm 3.

Algorithm 1: Memory Optimized based Rectilinear Steiner Minimum Tree Construction

Step 1. Start

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4011 http://www.webology.org

Step 2. Input a graph H and memory S

Step 3. For all nodes n ∈ N(H) using parallel computing environment

Step 4. Cumulate edge (α, v) in G where α is a Steiner nodes

Step 5. Get Divide & Conquer(H, G, S)

Step 6. Process Divide & Conquer (graph H, Memory S and tree G)

Step 7. If|H| ≤= S

Step 8. Get Memory Optimized Tree G using Memory optimization requirement

Step 9. Set dividend to false

Step 10. While (dividend = false)

Step 11. Update spanning tree (G, update) to obtain Memory optimized tree (H, G, S)

Step 12. If Update spanning tree is false

Step 13. ObtainG

Step 14. Obtain legal dividend of memory optimized spanning graph

((H1, H2, … , Hp), (G0, G1, G2, … , Gd), α)

Step 15. If d > 1

Step 16. Set dividend to true

Step 17. For q = 1; q ≤ d; q + + using parallel computing environment

Step 18. SetGq using Divide & conquer (Hq, Gq, S)using algorithm 2

Step 19. Compute Memory optimized G by merging ((G0, G1, … , Gd), α) using algorithm 3

Step 20. ObtainG

Step 21. Stop

Algorithm 2: Memory Optimized Division Algorithm

Step 1. Start

Step 2. Input a graph H, tree G and memory S

Step 3.G̅0 = a partitioned tree of G

Step 4. ∀ edge(a, b) ∈ M(H) in serial order on disk

Step 5.u = the 𝒜 of x and y in G

Step 6. 𝐈𝐟 (x, y) is a cross-edge &u is a non-leaf node in N(G̅0)

Step 7.(ux, uy) = μ̅(x, y)&M(μ) = M(μ) ∪ {(ux, uy)}

Step 8. 𝐈𝐟 (μ! = 𝒟)

Step 9. ∀ 𝒯 in μ

Step 10. 𝐈𝐟|𝒯| > 1

Step 11. AdjustG&μ adopting node contraction process w.r.t. 𝒯

Step 12.a0 = root of G, G0 = ∅&𝒬 = ∅ &𝒬. add(a0)

Step 13. While 𝒬! = ∅

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4012 http://www.webology.org

Step 14. x = 𝒬. 𝐫𝐞𝐦𝐨𝐯𝐞()

Step 15. Ifx! = Steiner node

Step 16. ∀ child node y of x in G

Step 17. If y ∈ N(G̅0)

Step 18. Add edge (x, y) into G0 , 𝒬. add(y)

Step 19. delete nodes that are not in N(G0) and their respective edges from μ

Step 20.{a1, a2, a3, … , ad} = the leaf node of a0 in G0

Step 21. 𝐅𝐨𝐫(q = 1; q < d; q + +)

Step 22.Gq = the subtree rooted at aq in G

Step 23. 𝐅𝐨𝐫(q = 1; q < d; q + +)

Step 24.Hq = the subgraph induced by nodes in Gq

Step 25. Obtain(H0, H1, H2, … , Hd), (G0, G1, G2, … , Gd), μ

Step 26. Stop

Algorithm 3: Memory Optimized Merging Algorithm.

Step 1. Start

Step 2. Input a (subtreeG0, G2, G3, … , Gd, μ)

Step 3.G = G0

Step 4. Topological sort all nodes in μ

Step 5. Reorder all nodes in G based on reverse topological order of correspondent node in μ

Step 6. 𝐅𝐨𝐫(q = 1; q < p; q + +)

Step 7. MergeGqinto G

Step 8. ∀ Steiner node y ∈ N(G)

Step 9. x = root node of y in G

Step 10. ∀ leaf node u of y in G

Step 11. Eliminate(y, u) from G& add(x, u) into G

Step 12. ObtainG

Step 13. Stop

The algorithm 1 memory optimized divide and conquer technique considers as its input Memory S,

Spanning graph G of H and graph H . The resultant tree G obtained happens to be a depth first search tree ofH

and this tree G is stored back at memory then H placed on disk. This model initially calculates whether the

graph Hwill fulfill memory optimization requirement, thus H can be accommodated to memory S. Later by

applying the memory optimization scheme a Memory optimized tree G of H is evaluated so that G is obtained.

In case if some G is not obtained, the approach further continues the computation of Memory optimized tree

G of Hby partitioning Memory optimized tree G applying divide and conquer technique. Then, using

algorithm 2, the model maximizes the amount of sub-graphs. In existing model the division is performed on

the spanning tree G and graph H by making use of structure G0 with same parent as G. It leads to less divided

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4013 http://www.webology.org

sub-graph and degrades I/O efficiency, thus, affecting overall processing time. Finally, the algorithm 3 takes

input, divided tree G0, G1,G2, … , Gd and the corresponding μ and outputs a graph G. Following two issues must

be solved to do merging operation in algorithm 1. First is how to arrange G0, G1,G2, … , Gd as the combined

tree G, such that G is a tree of graph H. Second is the way to process the Steiner node in treeG0, G1,G2, … , Gd.

More details of algorithm explanation can be obtained from [17][37].

B. High performance environment for parallel job execution model

This segment demonstrates the design of novel parallel execution platform that works on multicore

environment using cache memory. In this multicore parallel execution (MPE) framework, there are different

modes in which the jobs may operate. Initially all the sub jobs in a tree or graph will be in locked mode. If the

sub jobs dependency bounds are satisfied then it changes to accessible or available mode. After this the sub

jobs enters into steady or processing mode as long as the memory limits are reached or satisfied. In case the

memory prerequisite is not met then the sub job enters the waiting mode. Later, it stays in this mode until

required memory becomes available, and then changes to accessible mode. Applying this procedure helps in

ensuring that the memory prerequisite of sub-jobs are met and is executed by a core regardless of job size.

During execution mode the sub-job basically reads an input data and then begins processing jobs till it is

completed. Once the processing is completed the outputs are stored and it changes to completed mode. After

this the memory occupied by the sub job is released that can utilized again by succeeding sub jobs.

C. Limits modelling in High perforamnce computing parallel job execution model

 This division present a design of limit modeling for parallel makes pan times (MT) of job trees or graphs.

First we distinguish the limit parallel job makes pan times based on processing cores. Foremost challenge is

detecting the total active cores that are constrained by memory requirement during the course of execution

and to utilize the maximum limits of the makes pan times of job trees. But, memory availability is not fixed

and is dynamic in nature particularly in view of heterogeneous and composite nature of memory requirements

in the job trees. In order to resolve the above specified problems, the proposed research calculated the bounds

of parallel jobs (BPJ). This is accomplished by computing for an arbitrary tree or graph, a minimum and

maximum bound to the peak possible number of parallel jobs which are processed at same instance of time

within the estimated memory requirement. After this we compute the maximum bounds to the expected

makespan time of the job trees. Finally a memory constrained model is designed that is cost-effective and also

allows job trees to make efficient use of memory resource and thus increases the overall performance of job

trees.

D. Bounding of parallel jobs with enhanced resource utilization

 Since there are huge number of parallel sub-jobs in a job tree with each having different memory

requirements, it essentially becomes very hard to schedule the tree so that they hold effective makespan time

while ensuring effective usage of memory. Therefore an analysis is made for finding the way in which the

bounding of maximal number of parallel sub-jobs for scheduling is optimized when there is constraint on

memory. The algorithm then allocates the available memory immediately instead of preserving to the

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4014 http://www.webology.org

subsequent sub-jobs. The bounding of parallel jobs help in improved exploitation of the resource, which

results in obtaining improved tradeoffs amongst processing time and requirement of memory resource. Further

for attaining BPJ we minimize and maximize limitations on peak number of parallel sub jobs while the job

tree is being processed without dividing memory of size N. These two bounds are gained by analyzing each

clique in the derived tree (DT) H(W, F), represented byHe(W, Fe), which is constructed by

supplementing/augmenting H(W, F) (i.e., an edge is appended amongst node u and w if there are no directed

path between them) then weight of node is reassigned or optimized by Opt(w), w ∈ W. Assume D as a clique

in a well- linked component 𝒟 of the DT, such that minimal for 𝒟 are estimated by resulting equation:

i↓(N, 𝒟) = min
D∈𝒟

{|T(D)|: T(D) = arg min
T⊆D↓

{|N − ∑ nj

|T|

j=1

|}}

(1)

and maximal limits for 𝒟 by applying the equation mentioned

i↑(N, 𝒟) = max
D∈𝒟

{|T(D)|: T(D) = arg min
T⊆D↑

{|N − ∑ nj

|T|

j=1

|}}

(2)

where nj = Opt(j) is memory prerequisite of job j in T, T(D) depicts the selected subgroup of D,

whose memory perquisite utilize within N. Nevertheless, the method for selection is dependent on bound

computation.

The minimal and maximal bounds on BPJ for each connected component can be used to assess the BPJ

within memory limits N for an established tree He(W, Fe) using following equation

BPJ = [i↓(N), i↑(N)], (3)

where i↓(N) = min
𝒟∈𝔼

{i↓(N, 𝒟)} and i↑(N) = max
𝒟∈𝔼

{i↑(N, 𝒟)}, in which 𝔼 is a cluster of connected component of

the DT.

For obtaining optimum computation the proposed work calculates the maximal limit applying dynamic

programming approach which means that this technique allocates the existing memory size N amongst parallel

sub-jobs in the graph. Specifically, an assigned memory limit d, 0 < d ≤ N, have successive repetition in

order to calculate the highest number of parallel sub-jobs that could be processed at same instance, specified

as 𝒪[v, d], the course of developing the sub-graph positioned at node w is computed as shown

𝒪[v, d] = max {qv(d), ∑ 𝒪[w, nw]

∑ nw≤dw∈Out(v)

} ,

(4)

where

qv(n) = {
0 if n ≤ nv

1 Otherwise

(5)

is a technique for finding the number of cores required for node v for a memory of size n. This proves

that 𝒪[v, d] is performed by allocating the memory to sub-graphs, sub-trees or to node v, whichever provides

more parallelization of sub-jobs.

For solving Eq. (5), the universal tree graph (TG) is transformed into binary representation. This

transformation is done by cumulating two duplicate nodes v̅ and v̿ iteratively using following equation

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4015 http://www.webology.org

{

𝒪[v, d] = max{qv(d), 𝒰[v̅, d]}

𝒰[v̅, d] = max
0≤r≤d

{𝒪[w, r] + 𝒰[v̿, d − r]}

𝒰[∅, d] = 0

(6)

Where w is v’s and alsov̿’s left most child sub-jobs in the TG. 𝒰[v̅, d − r] Depicts maximal amount

of parallel sub-jobs within entire sub-graph of node v kept by enduring memory capability (i.e., size) of d − r.

Preliminarily, left-most sibling of v is allocated size r. Post that its entire child sub-graph, which connects

duplicate node to utilize leftover memory of d − r. For easing algorithm execution the duplicated nodes are

introduced. Further, they don’t use any memory. Instead, the algorithm evaluates two matrices 𝒪[v, d]

and 𝒰[v, d], respectively, to finish the estimation, and lastly, 𝒪[root, N] is the intended strategy to i↑(N) for

the TG. Similarly, this work estimates i↑(N) by searching least amount of parallel sub-jobs (i.e., big) in the

graph to fully utilize the memory as possible, rather than searching for maximal amount of parallel sub-jobs

(i.e., small).

Two matrices 𝒪 and 𝒰 is created alternatively for estimating Eq. (5) each possessing size of o(nN).

Every initialization of 𝒪 requires a fixed cost while every initialization of 𝒰 requires at least N cost because

of max0≤r≤d computation when d is maximal of N. Therefore, the time complexity order of Eq. (5) is O(nN2).

Thus, we attain optimal solution within polynomial bound for n-node TG.

E. Bounding schedule of parallel job execution

Given any job tree that is to be processed on multi-core framework having q cores, the makespan time of

parallel processing the job tree remain limited. Now, consider the makespan time of a job tree on single core

environment be U1 (i.e., q = 1) and makespan time on multi-core framework is denoted as U∞ (i.e., q = ∞).

Hence, the parallel makes pan of a tree is constrained on available processing core q ∈ [1 + ∞] which is as

mentioned

Uq ≤
U1

q
+ U∞

(7)

The above result is developed by considering workload that is of static size which means that total

processor cores increases as the job size increases. In addition the memory size is also considered to be

boundless (that is memory limitations are not considered). Besides, adapting BPJ helps in improving the result

when memory requirement is constrained by N, the reason for this is because the number of processing core

that can be used is around[i↓(N), i↑(N)]. Thus, we achieve subsequent result conforming to probable parallel

makespan time of the job tree. Now consider a job tree that Un and U∞ describe corresponding MT with

sequential memory specified by

N = n (8)

and parallel MT without memory requirement constraint is as mentioned

N = +∞, (9)

Later, the model can perform bounding of predictable MT of the job tree when available memory is

constrained by

N ∈ [n, N↑], (10)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4016 http://www.webology.org

where N↑ is depicted as the minmax memory requirement of the tree calculated by the below mentioned

equation

U↑N ≤
lni↑(N)

i↑(N) − i↓(N)
Un + U∞

(11)

Now, consider that number of parallel sub-jobs is assigned in uniform manner within[i↓(N), i↑(N)],

for one ofq ∈ [i↓(N), i↑(N)]. Thus the model possess Uq ≤
Un

q
+ U∞ as per Eq. (7). Thus,

∑ Uqq∈[i↓(N),i↑(N)]

i↑(N) − i↓(N)
≤

∑ {
1

q
Uq}q∈[i↓(N),i↑(N)]

i↑(N) − i↓(N)
+ U∞

(12)

As the nth frequency total is massive as the logarithm value of n, then for this case we say Eq. (11)

holds. Further, the actual memory used during execution phase depend on the order it is processed where Un

is realized adapting maximal requirement of sub-job with certain contextual environment. In actual

environment, it can be established that i↓(N) is identical to i↑(N) when N is small. Hence, we obtainUn ≤
U1

i↓(N)
+ U∞.

Algorithm 4: Performance and memory constraint parallel computation (PMCPC) algorithm

Steps

1. Start

2. Execute 𝐏𝐌𝐂𝐏𝐂(𝐇, 𝐍)

3. R ← ∅ // queue R is created

4.R. add(wo) // source is added to queue R

5. Event 𝐏𝐌𝐂𝐏𝐂:

6.while(R ≠ ∅)do

7. w ← R. remove() //Element is remove from queue R and moved to w

8. if(nw ≤ N)then //w can be accepted for computing

9.N ← N − nw //Updating the existing N value

10. else

11.w. resetq(w, r) //Resetting the priority or selectivity

12.R. add(w) //Restricted parallelization

13. end if

14. if (items in R are not altered) then

15. return //Obtained N becomes inadequate

16. end if

17. end while

18. eventwcompleted:

19.N ← N + Nw //w freed

20. For(∀v ∈ w. outedge())do //assignment of out edges

21. f. setidentifier(d) // Every edge is defined an identifier

22. For(∀f ∈ V where f ∈ v. inedge()) do

23. If(∀f ∈ v. inedge() is identified) then

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4017 http://www.webology.org

24.v. setq(αv, uv
f , uv

u, degr, cent)

25. R. add(v)

26. End of if

27. End for

28. End for

29. End process

30. Stop

The proposed novel algorithm not only solves the problem of memory limitations but also produces

decreased makes pan time (i.e., find shortest scheduling lengths) by adopting depth first search (DFS) as well

as breath first search (BFS) techniques. Applying, BFS aid in enhancing memory and parallel efficiency and

DFS works in contrary. In addition, each sub jobs w ∈ W has varied proportion αwthat can be computed as

follows

αw =
∑ Tin(j)j∈In(w)

∑ Tout(j)j∈Out(w)

(13)

The objective of the novel parallel computing framework is to apply above mentioned data for

selecting the sub jobs in the list that are prepared to initiate in such a way that fetches better tradeoff amongst

memory efficiency and parallelization. This novel technique comprises of two main events. The PMCPC event

consists of while loop, used for handling PMCPC event in which each ordered sub-job is added to queue R

later is selected by a processing core only if the memory requirements are satisfied. If the memory

requirements are not met then the sub job reenters the queue R by modifying the selectivity parameter. One

of the salient features of this novel technique is the function v. setq(αv) and w. resetq(w, r), that can leverage

various searching methodologies in the course of scheduling. In our novel design the selectivity parameter of

sub-job nodes in R is set based on their αw in a top-down manner (i.e., αw1
≥ αw2

≥ ⋯. Further, degrw

depicts the degree of node w within H(W, F), centw represents the centrality metric of node w in H(W, F).

The centrality metric specifies the total time that node w acts as a connector in the shortest path amongst

nodes. The technique basically is designed towards processing a job tree or scheduling the graph using

memory limitations which satisfies the requirements of the jobs bounds. Also, the algorithm is hybrid in nature

i.e., it can leverage both DFS and BFS aimed at attaining good parallelization with memory requirement.

Once the sub job processing is complete, the memory nw is freed and then added toN, also the output edges

are assigned an identifier. Further, for each sibling of sub-job w, they are included into R with predefined

selectivity parameter only if its entire input edges are assigned identifiers, so that the corresponding input data

becomes accessible. A salient feature in algorithm 4.4 is that the events runs, autonomously and coordinates

among themselves, by creating and exploiting the N memory blocks by means of sub-jobs provision and de-

provision.

Un ≤
U1

i↓(N)
+ U∞.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4018 http://www.webology.org

III. EXPERIMETAL RESULT AND ANALYSIS

The segment depicts the experimental assessment of the outcome attained of the novel memory and

I/O efficient RSMT generation technique on high performance computing environment compared with the

existing routing technique. The design developed is realized adapting C++ programing language on eclipse

IDE. The implementation framework used for evaluating the novel approach is Centos 7.0 operating system

(OS), 2.3 Ghz, intel I-5 processor that comprises four logical core with 12 GB RAM. This section compares

the performance evaluation of proposed model to existing model [6] with respect to wire-length and execution

time. For evaluating, this model considers the IBM benchmark [18] the details of these benchmarks as shown

in Table 1.

TABLE I. BENCHMARK DETAILS OF VLSI CIRCUIT

Benchmark

Circuit Case
Number of Net

maximum

degree

Average Degree

IBM1 14111 42 3.58

IBM2 19584 134 4.15

IBM3 27401 55 3.41

IBM4 31970 46 3.31

IBM5 28446 17 4.44

IBM6 34826 35 3.68

IBM7 48117 25 3.65

IBM8 50513 75 4.06

IBM9 60902 39 3.65

IBM10 75196 41 3.96

IBM11 81454 24 3.45

IBM12 77240 28 4.11

IBM13 99666 24 3.58

IBM14 152772 33 3.58

IBM15 186608 36 3.84

IBM16 190048 40 4.10

IBM17 189581 36 4.54

IBM18 201920 66 4.06

Average 106299 134 3.92

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4019 http://www.webology.org

A. Wire length and memory perforamcne evaluation

As discussed in previous section the experiments are evaluated using ISPD 98 benchmark as specified

in Table I. The Table II shows the resultant wire length and memory usage by the novel technique and existing

FLUTE routing model. From outcome attained it is observed that an average 0.026% reduction in wire length

is accomplished by proposed MIOERSMT compared to existing FLUTE routing model. Similarly, an average

of 77.71% reduction in memory usage is attained by proposed MIOERSMT as compared to existing FLUTE

routing model. Therefore, the proposed novel approach is proved scalable in accordance to minimizing wire

length and decrease in memory usage when compared with standard FLUTE VLSI routing design.

TABLE II. WIRELENGTH AND MEMORY PERFORAMNCE EVALUATION

Benchmark Circuit

MIOERSMT FLUTE [6]

Wire length Memory usage Wire length
Memory

usage

IBM1 444307 109264 444553 398908

IBM2 527382 168457 527641 713451

IBM3 761993 180996 762276 711893

IBM4 855986 211003 856273 723607

IBM5 2809615 224661 2810816 1188898

IBM6 494144 244577 495969 970098

IBM7 994978 337674 995265 1248799

IBM8 944096 414,185 944382 2078590

IBM9 1260914 411154 1261199 1595039

IBM10 3190871 524740 3191615 2239228

IBM11 1898961 531886 1899367 1789611

IBM12 2914884 543178 2915521 2407032

IBM13 2450087 659237 2450577 2551928

IBM14 3180260 1030486 3180777 3801149

IBM15 2922395 1284495 2922778 5603960

IBM16 3500272 1348313 3500776 5732675

IBM17 5368916 1414806 5369659 6804778

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4020 http://www.webology.org

IBM18 2145856 1627262 2146128 6982462

Average 2036995.389 625,910 2037531.778 2,641,228

B. Runtime perforamcne evaluation

Experimentations are performed on ISPD 98 benchmark as specified in Table I. The resultant runtime

achieved by the novel routing design and existing routing design [6] is shown Table III. From outcome

attained it is observed that average of 32.63% runtime reduction is attained by proposed MIOERSMT

compared to existing FLUTE routing model. Further, experiment is conducted under HPC computing

framework by varying the number of parallel computing cores. From outcome attained, it is observed that an

average of 49.34% and 79.38% runtime reduction is attained by novel MIOERSMT design compared to

existing FLUTE routing design considering 2 processing core and 4 processing core, respectively. Therefore,

the proposed novel approach is scalable using parallel processing core in terms of reducing runtime

TABLE III. RUNTIME TIME PERFORAMNCE EVALUATION

Benchmark

Circuit Case

FLUTE [6] MIOERSMT

Single core with 2 core With 4 core

IBM1 180000 90000 48000 28900

IBM2 220000 130000 69150 39400

IBM3 267000 163700 80100 45925

IBM4 269000 161100 83400 39275

IBM5 870000 410000 232000 112500

IBM6 277000 183000 89000 53750

IBM7 298800 193000 122500 44250

IBM8 320000 250000 143000 71500

IBM9 322000 219000 101000 64750

IBM10 347000 260000 123000 77000

IBM11 390000 298000 158000 70500

IBM12 510000 390000 205000 99900

IBM13 570000 410000 195150 122500

IBM14 640000 520000 240300 149000

IBM15 651000 517000 277000 120250

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4021 http://www.webology.org

IBM16 690000 587000 312000 149750

IBM17 1780000 1190000 512000 247500

IBM18 1880000 1090000 395000 212500

Average 582322.2222 392322.2222 188088.8889 97175

IV. CONCLUSION

This paper conducted a deep rooted analysis for addressing problem of RSMT for modern VLSI circuit.

From analysis it is seen that existing method used FLUTE for routing in PD construction. However, usage of

FLUTE induced memory and I/O overhead resulting in increase of overall processing cost and processing

time. Therefore, it is important to minimize I/O and memory overhead while constructing RSMT for which

this paper presented a memory and I/O efficient RSMT construction. The MIOERSMT uses depth-first search

and divide and conquer approach to build a Memory and I/O optimized tree. Further, a parallel computing

environment design is presented to reduce runtime of RSMT construction in parallel manner under HPC

environment (i.e., both CPU and GPU). However, GPU based model induces high deployment cost and

requires efficient memory management method. Hence, the work presents a Performance and memory

constraint parallel computation (PMCPC) algorithm. The model allows us to exploit the computational power

from these shared-memory multi-core HPC systems. Experiments are conducted on small and long nets using

ISPD 98 benchmarks for evaluating performance of proposed and existing VLSI routing method. The

performance is evaluated in terms of wire length (WL), memory utilization and runtime in sequential (i.e.,

with single core) as well as in parallel (i.e., using 2 cores and 4 cores). The experimental outcome shows that

the proposed VLSI routing model reduces wire length and memory utilization by 0.026% and 77.71% when

compared to the existing VLSI routing model, respectively. Further, the proposed VLSI routing model reduces

runtime by 32.63% when compared with existing VLSI routing model. Then, the proposed parallel VLSI

routing model attain a computation speedup of 49.34% and 79.38%considering 2 cores and 4 cores when

compared with proposed sequential (i.e., with single core) VLSI routing model, respectively. From overall

results attained it can be seen that the proposed routing model is robust irrespective of wire length, memory

and computation performance when compared with existing VLSI routing model. Future work would consider

performance evaluation considering higher number of cores and changing the memory size.

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness. New York: Freeman, 1979.

[2] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng, “Refined single trunk tree: A rectilinear Steiner tree

generator for interconnect prediction,” in Proc. ACM Int. Workshop Syst. Level Interconnect Prediction,

2002, pp. 85–89.

[3] Chris Chu. FLUTE: Fast lookup table based wirelength estimation technique. In Proc. IEEE/ACM Intl.

Conf. on Computer-Aided Design, pages 696–701, 2004.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4022 http://www.webology.org

[4] Chris Chu and Yiu-Chung Wong. Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI

design. In Proc. Intl. Symp. on Physical Design, pages 28–35, 2005.

[5] Wong, Yiu-Chung, and Chris Chu. "A scalable and accurate rectilinear Steiner minimal tree algorithm."

VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE International Symposium on. IEEE,

2008.

[6] Chu, Chris, and Yiu-Chung Wong. "FLUTE: Fast lookup table based rectilinear steiner minimal tree

algorithm for VLSI design." Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on 27.1 (2008): 70-83.

[7] Hao Zhanga, Dong-yi Yea, Wen-zhong Guo ”A heuristic for constructing a rectilinear Steiner tree by

reusing routing resources over obstacles” Volume 55, Pages 162–175, 2016.

[8] P. P. Saha, S. Saha and T. Samanta, "An efficient intersection avoiding rectilinear routing technique in

VLSI," 2013 International Conference on Advances in Computing, Communications and Informatics

(ICACCI), Mysore, 2013, pp. 559-562.

[9] G. Ajwani, C. Chu and W. K. Mak, "FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner

Tree Construction," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 30, no. 2, pp. 194-204, Feb. 2011.

[10] K. Ma, Q. Zhou, Y. Cai, C. Zhang and Z. Qi, "A Steiner tree construction method for flexibility and

congestion optimization," 2013 International Conference on Communications, Circuits and Systems

(ICCCAS), Chengdu, 2013, pp. 519-523.

[11] T. H. Wu, A. Davoodi and J. T. Linderoth, "GRIP: Global Routing via Integer Programming," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 72-84,

Jan. 2011.

[12] M. Pan, Y. Xu, Y. Zhang, and C. Chu, “FastRoute: An efficient and high-quality global router,” VLSI

Design, vol. 2012, 608362, 2012.

[13] Umair F. Siddiqi, Sadiq M. Sait, and Yoichi Shiraishi, “A Game Theory-Based Heuristic for the Two-

Dimensional VLSI Global Routing Problem,” Journal Of Circuits Systems And Computers, vol. 24, no.

6, 2015.

[14] Umair F. Siddiqi, and Sadiq M. Sait, “A Game Theory Based Post-Processing Method to Enhance VLSI

Global Routers,” IEEE Access, vol. 5, pp. 1328–1339, 2017.

[15] Chow, Wing-Kai & Li, Liang & F.Y. Young, Evangeline & Sham, Chiu-Wing. Obstacle-avoiding

rectilinear Steiner tree construction in sequential and parallel approach. Integration, the VLSI Journal.

47. 105–114. 10.1016/j.vlsi.2013.08.001, 2014.

[16] A. Momeni, P. Mistry and D. Kaeli, "A parallel clustering algorithm for placement," Fifteenth

International Symposium on Quality Electronic Design, Santa Clara, CA, 2014, pp. 349-356.

[17] Latha, N.R & Prasad, G.R.. Wirelength and memory optimized rectilinear steiner minimum tree routing.

1493-1497, 2017. 10.1109/RTEICT.2017.8256846.

[18] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp. Phys. Des., 1998, pp.80–85.

[Online]. Available: http://vlsicad.ucsd.edu/UCLAWeb/cheese/ispd98.html

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4023 http://www.webology.org

[19] SWARM: A Parallel Programming Framework for Multicore Processors David A. Bader, Varun Kanade

and Kamesh Madduri.

[20] Y. Cai, C. Deng, Q. Zhou, H. Yao, F. Niu and C. N. Sze, "Obstacle-Avoiding and Slew-Constrained

Clock Tree Synthesis With Efficient Buffer Insertion," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 23, no. 1, pp. 142-155, Jan. 2015.

[21] C. H. Liu, C. X. Lin, I. C. Chen, D. T. Lee and T. C. Wang, "Efficient Multilayer Obstacle-Avoiding

Rectilinear Steiner Tree Construction Based on Geometric Reduction," in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 12, pp. 1928-1941, 2014.

[22] Held S, Spirkl S T. A fast algorithm for rectilinear Steiner trees with length restrictions on obstacles.

Proceedings of the 2014 on International symposium on physical design. ACM, 37-44, 2014.

[23] M. Wang and Z. Li, "A Spatial and Temporal Locality-Aware Adaptive Cache Design With Network

Optimization for Tiled Many-Core Architectures," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 9, pp. 2419-2433, Sept. 2017.

[24] S. He, Y. Wang, X. Sun and C. Xu, "Using MinMax-Memory Claims to Improve In-Memory Workflow

Computations in the Cloud," in IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4,

pp. 1202-1214, 1 2017.

[25] Wang, Run-Yi & Pai, Chia-Cheng & Wang, Jun-Jie & Wen, Hsiang-Ting & Pai, Yu-Cheng & Chang,

Yao-Wen & Li, James & Jiang, Jie-Hong. Efficient Multi-Layer Obstacle-Avoiding Region-to-Region

Rectilinear Steiner Tree Construction *. 1-6, 2018.

[26] Panda S.K., Panda D.C. (2018) Developing High-Performance AVM Based VLSI Computing Systems:

A Study. In: Pattnaik P., Rautaray S., Das H., Nayak J. (eds) Progress in Computing, Analytics and

Networking. Advances in Intelligent Systems and Computing, vol 710. Springer, Singapore.

[27] Jiangong Song, Qinyong Li and Shilong Ma, “ Toward Bounds on Parallel Execution Times of Task

Graphs on Multicores with Memory Constraints” in IEEE Access , Volume 7, April 2019.

[28] Y. Han, K. Chakraborty, and S. Roy, “A global router on GPU architecture,” in IEEE International

Conference on Computer Design (ICCD), pp. 1–6, 2013.

[29] H. Shojaei, A. Davoodi, and J. Linderoth, “Congestion analysis for global routing via integer

programming,” in IEEE International Conference on Computer-Aided Design (ICCAD), pp. 256–262,

2011.

[30] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra. PaRSEC: Exploiting

heterogeneity for enhancing scalability. Computingin Science & Engineering, 15(6):36–45, 2013.

[31] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. L’Excellent, and F. Rouet. Robust memory-

aware mappings for parallel multifrontal factorizations.SIAM J. Scientific Computing, 38(3), 2016.

[32] G. Aupy, C. Brasseur, and L. Marchal. Dynamic memory-aware task-tree scheduling. In Proceedings of

the International Parallel and DistributedProcessing Symposium(IPDPS), pages 758–767. IEEE, 2017.

[33] M. Jacquelin, L.Marchal, Y. Robert, and B. Uçar. On optimal tree traversals for sparse matrix

factorization. In Parallel & Distributed Processing Symposium(IPDPS), 2011 IEEE International, pages

556–567. IEEE, 2011.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4024 http://www.webology.org

[34] M. Sergent, D. Goudin, S. Thibault, and O. Aumage. Controlling the memory subscription of distributed

applications with a task-based runtime system. In Proceedings of the International Parallel and

Distributed Processing SymposiumWorkshops, pages 318–327. IEEE, 2016

[35] K. Ma, Q. Zhou, Y. Cai, C. Zhang and Z. Qi, "A Steiner tree construction method for flexibility and

congestion optimization," 2013 International Conference on Communications, Circuits and Systems

(ICCCAS), Chengdu, 2013, pp. 519-523.

[36] Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR:Steiner-tree approximation

in relationship graphs. In: Proc. of IEEE InternationalConference on Data Engineering, Washington DC,

USA, 868{879, IEEE (2009).

[37] Latha N.R., Dr. G.R. Prasad, “Performance and Memory Efficient High Performance Computing

Framework for VLSI Routing” Progress in Computing, Analytics and Networking, pp.369-381, March

2020(springer)

